魔性的float浮点数精度问题

作者: SegmentFault博客  更新时间:2021-01-02 10:00:30  原文链接


从一个问题引入

如果你以前接触过C语言,那么对下面的这段代码一定很熟悉:

#include <stdio.h>

int main(void)
{
        float f_num1 = 21.75;
        float f_num2 = 13.45;
        printf("f_num1 = %f\n", f_num1);
        printf("f_num2 = %f\n", f_num2);
        printf("f_num1 + f_num2 = %f\n", f_num1 + f_num2);

        return 0;
}

相信很多人不用运行,能够直接报出答案, f_num1 = 21.75 , f_num2 = 13.45 , f_num1 + f_num2 = 35.2 ,无论是从常识还是理论角度都不难理解。

下面我们运行一下程序,验证我们的猜测正不正确:

f_num1 = 21.750000
f_num2 = 13.450000
f_num1 + f_num2 = 35.200001

f_num1f_num2 的结果和我们预想的一样,之所以后面多了四个0,是因为 %f 默认保留6位有效数字。但是 f_num1 + f_num2 的结果是什么鬼,这个 35.200001 是从哪里来的?

是不是一下子颠覆了我们的认知?

惊不惊喜,意不意外,刺不刺激?是不是发现自从学了C语言,连简单的算术都不会算了?

别急,还有更令你崩溃的。

如果是C++呢

下面我们看看以上程序的C++版本:

#include<iostream>
using namespace std;

int main(void)
{
        float f_num1 = 21.75;
        float f_num2 = 13.45;
        cout << "f_num1 = " << f_num1 << endl;
        cout << "f_num2 = " << f_num2 << endl;
        cout << "f_num1 + f_num2 = " << f_num1 + f_num2 << endl;
        return 0;
}

直接来看输出结果吧:

f_num1 = 21.75
f_num2 = 13.45
f_num1 + f_num2 = 35.2

很神奇是不是?因为这个结果看起来正常多了。

看到这里,相信我们的心里都有老大一个疑问:为什么C程序和C++程序对同样的数字处理,输出的结果却不一样的? cout 到底做了些什么?

cout的神奇之处

为了验证cout对浮点数的处理,我们不妨看一下下面的程序:

#include <iostream>
using namespace std;

int main(void)
{
        float num1 = 5;
        float num2 = 5.00;
        float num3 = 5.14;
        float num4 = 5.140000;
        float num5 = 5.123456;
        float num6 = 5.987654321;
        cout << "num1 = " << num1 << endl;
        cout << "num2 = " << num2 << endl;
        cout << "num3 = " << num3 << endl;
        cout << "num4 = " << num4 << endl;
        cout << "num5 = " << num5 << endl;
        cout << "num6 = " << num6 << endl;

        return 0;
}

看结果来分析比较直观,运行以上程序,结果如下:

num1 = 5
num2 = 5
num3 = 5.14
num4 = 5.14
num5 = 5.12346
num6 = 5.98765

num1num2num3num4 这两组结果可以知道, cout 对于 float 类型数值小数点后面的0是直接省去了的(这点和C语言格式化输出的%g有点像)。

num5num6 两组结果不难分析出, cout 对于浮点型数值,最多保留6位有效数字。

以上是cout处理浮点数时的特点,应该记住。

事实上,我们使用 iostream 库里的 cout.setf 不难使 cout 恢复精度。我们对上面的代码修改如下:

#include<iostream>
using namespace std;

int main(void)
{
        float f_num1 = 21.75;
        float f_num2 = 13.45;
        cout.setf(ios_base::fixed, ios_base::floatfield);       
        cout << "f_num1 = " << f_num1 << endl;
        cout << "f_num2 = " << f_num2 << endl;
        cout << "f_num1 + f_num2 = " << f_num1 + f_num2 << endl;
        return 0;
}

输出的结果就与C语言版本一模一样了:

f_num1 = 21.750000
f_num2 = 13.450000
f_num1 + f_num2 = 35.200001

答案呼之欲出

文章写到这里,相信你已经看出来问题的所在了。

不错,之所以结果不一样,正是由于精度引起的!

让我们回顾一下官方教材里关于 float 精度的描述:

浮点型和表示单精度、双精度和扩展精度值。 C++ 标准指定了一个浮点数有效位数的最小值,然而大多数编译器都实现了更高的精度。 通常, float 以一个字(32比特)来表示, double 以2个字(64比特)来表示, long double 以3或4个字(96或128比特)来表示。一般来说,类型 floatdouble 分别有7和16个有效位;类型 long double 则常常被用于有特殊浮点需求的硬件,它的具体实现不同,精度也各不相同。( 《C++ Primer第五版》

由以上描述,我们不难知道,对于 float 来说,最多只有7个有效位,这也就意味着,当实际存储的精度大于 float 的精度范围时,就会出现精度丢失现象。

为了进一步佐证上述问题,我们不妨将 float 的数值放大10亿倍,看看里面存储的值到底是多少:

#include<iostream>
using namespace std;

int main(void)
{
        float f_num1 = 21.75;
        float f_num2 = 13.45;
        cout.setf(ios_base::fixed, ios_base::floatfield);
        int billion = 1E9;
        float f_num10 = f_num1 * billion;
        float f_num20 = f_num2 * billion;
        cout << "f_num1 = " << f_num1 << endl;
        cout << "f_num2 = " << f_num2 << endl;

        cout << "f_num10 = " << f_num10 << endl;
        cout << "f_num20 = " << f_num20 << endl;
        return 0;
}

以上程序运行结果如下:

f_num1 = 21.750000
f_num2 = 13.450000
f_num10 = 21749999616.000000
f_num20 = 13449999360.000000

由此我们不难推断,21.75在实际存储时,并不是存储的21.75,而是21.749999616,同样的,12.45存储的是12.449999360,这样计算出来之后自然就会造成结果的不正确。

再看一个例子

我们再来看一个精度丢失造成运算结果不正确的例子。

#include<iostream>
using namespace std;

int main(void)
{
        float num1 = 2.3410E23;
        float num2 = num1 + 1.0f;
        cout << "num2 - num1 = " << num2 - num1 << endl;
        return 0;
}

如果精度不丢失,运算结果应该为1才对,可是因为精度丢失,导致最后的加1实际和没加效果一样,计算出来的结果是0。

num2 - num1 = 0

怎么解决

那么,既然float有这么多稀奇古怪的问题,应该怎么去解决和避免呢?

首先,当然推荐大家在编程时尽量使用高精度的浮点类型

比如double就比float精度要高,很多时候,使用double能够避免很多问题,比如本文一开始提到的问题,如果使用double就能完美解决:

#include <stdio.h>

int main(void)
{
        double f_num1 = 21.75;
        double f_num2 = 13.45;
        printf("f_num1 = %lf\n", f_num1);
        printf("f_num2 = %lf\n", f_num2);
        printf("f_num1 + f_num2 = %lf\n", f_num1 + f_num2);

        return 0;
}

大家可以自己运行一下看看结果。

double 类型可以解决大部分精度丢失问题,基本上满足日常使用了,但是仍然不能避免精度丢失( double 也有精度限制),这时候就需要想另外的方法来解决了。

万能的cout

前面提到过, cout 其实是可以解决这种精度丢失问题的,所以如果不是对效率要求过高或者要求格式化输出(其实 cout 也可以实现格式化输出,此处不详细展开)必须使用 printf ,在编写C++程序时,建议使用 cout 代替 printf

写在最后

本文只是简单的介绍了一下浮点型数值的精度问题,如果要深入细究,肯定不止这么多内容,比如浮点型数值在内存中是如何存储的?在字节里是如何分布 的?这才是真正核心的原理部分。在这里只浅尝辄止地讲述了一下,但相信阅读者已经对精度问题有了一个初步的认识。